
i

AUTOMATED HANDLING OF PORT CONTAINERS USING MACHINE
LEARNING

A Thesis
BY

MD. ASHIFUR RAHMAN

STUDENT NO.: 1312029

ABU SALEH MD. ARMAN BUHUIYAN

STUDENT NO.: 1312038

 &

BHUBON COSTA

STUDENT NO.: 1312045

Submitted to the

 Department of NAME, BUET

In Partial Fulfillment of the Requirements for the

Degree of Bachelor in Science in Naval Architecture & Marine Engineering

Under the Supervision of

Professor Dr. Md. Mashud Karim

DEPARTMENT OF NAVAL ARCHITECTURE & MARINE ENGINEERING

BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLGY

DHAKA-1000, BANGLADESH. OCTOBER, 2018

ii

DECLARATION

We declare that this thesis is a presentation of our original research work except for

quotations and citations, which have been duly acknowledged and the thesis has not been

presented in any other university for consideration of any certification. Whenever

contributions of others are involved, every effort is made to indicate it clearly, with due

reference to the literature and acknowledgement of collaborative research and discussions.

The work was done under the guidance of Professor Dr. Mashud Karim, at the

Bangladesh University of Engineering & Technology.

 Ashifur Rahman

Abu Saleh MD. Arman Bhuiyan

Bhubon Costa

iii

ACKNOWLEDGEMENTS

The authors would like to express with due respect their deepest gratitude to their

supervisor Dr. Mashud Karim, Professor, Department of Naval Architecture & Marine

Engineering, BUET, whose guidance and valuable directives was encouraging at all

stages of this research.

The authors are also grateful to the Library of Department of Naval Architecture &

Marine Engineering, BUET for providing resources required for the successful

completion of this work.

Finally they thank all the individuals who shared their knowledge through World Wide

Web.

iv

ABSTRACT

Roughly ninety percent of the world's goods are transported by sea with over seventy per-

cent as containerized cargo. Most of the containers in our only sea port are handled

manually. Port containers handled by human resources cost the shipping industry a lot of

valuable time and resources.

Automation of port cargo handling using artificial intelligence will result in reduction of

human power, less consumption of time and will be cost effective.

To handle port containers autonomously, object recognition can be used which is one type

of supervised machine learning. Supervised learning, in the context of artificial

intelligence (AI) and machine learning, is a type of system in which both input and

desired output data are provided. Input and output data are labeled for classification to

provide a learning basis for future data processing.

To detect objects or more specifically containers in this case, Google TensorFlow object

detection API with python 3 as an interface is used. TensorFlow is an open-

source software library for dataflow programming across a range of tasks. It is a symbolic

math library, and is also used for machine learning applications such as neural

networks. It is used for both research and production at Google, often replacing its

closed-source predecessor, DistBelief. Several python package such as Numpy,

Matplotlib, OpenCV etc. are used to attain the desired goal.

Trained Artificially intelligent model is able to detect customized container prototype

with an accuracy above 98%. An automated container handling prototype was made

based on this research which was able to handle container autonomously.

https://searchenterpriseai.techtarget.com/definition/AI-Artificial-Intelligence

v

TABLE OF CONTENTS

DECLARATION ... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT ... iv

TABLE OF CONTENTS ... v

LIST OF TABLESvii

LIST OF FIGURESviii

NOTATIONSix

ACRONYMS AND ABBREVIATIONS x

CHAPTER ONE ... 1

INTRODUCTION ... 1

1.1 General .. 1

1.2 Objective of the study ... 4

1.3 Scope of the document ... 4

1.4 Organization of the thesis ... 5

CHAPTER TWO .. 6

PRELEMINARIES AND LITERATURE REVIEW .. 6

2.1 General .. 6

2.2 Introduction of Containers .. 6

2.3 Disadvantages of manual handling of containers ... 7

2.4 Introduction to automation: Neural Networking ... 8

2.5 Architecture of Neural Networking .. 8

There are two types of Neural Networking: ... 8

2.5.1 Feed-forward networks ... 9

2.5.2 Feedback network: ... 9

2.5.3 Network layers: .. 10

2.6 The Learning Process .. 11

2.7 The Back-Propagation Algorithm .. 13

2.8 Convolutional Neural Network ... 14

2.9 Architecture Overview .. 15

vi

2.10 Conclusions17

CHAPTER THREE .. 18

CLASSIFICATION AND DATA TRAINING PROCESS .. 18

3.1 Introduction .. 18

3.2 TensorFlow object detection API .. 18

3.2.1 Working procedure of TensorFlow .. 19

3.2.2 Installation procedure of TensorFlow .. 21

3.3 Python and pip3 .. 22

3.4 Installation of Python Packages .. 22

3.4.1 Jupyter Notebook... 22

3.4.2 Numpy .. 23

3.4.3 Matplotlib .. 23

3.4.4 OpenCV .. 24

3.5 Training Process .. 24

3.6 Testing process.. 28

3.6.1 Testing process using static images ... 29

3.6.2 Testing process using live video feed ... 31

3.7 Prototype of automated port handling mechanism ... 33

CHAPTER FOUR ... 37

EXPERIMENTAL RESULTS ... 37

4.1 Introduction .. 37

4.2 Total loss ... 37

4.3 Total loss comparison for different models .. 38

4.4 Conclusion ... 38

CHAPTER FIVE ... 39

CONCLUSIONS ... 39

5.1 Introduction .. 39

REFERENCES .. 42

vii

List of Tables

Table 4.1: Experimental Results ...37

viii

List of Figures

Fig 2.1: An example of a simple feedforward network10

Fig 2.2: Function of a Neural Network13

Figure 2.3: The use of filters to get Activation Maps16

Figure 2.4: Activation functions16

Fig 2.5: All layers of convolutional neural network demonstration ...17

Fig 3.1: TensorFlow graph construction algorithm ... 20

Fig 3.2: TensorFlow Launching Graph ... 21

Fig 3.3: TensorFlow Installation .. 21

Fig 3.4: Jupyter Installation with pip3 ... 23

Fig 3.5: Matplotlib installation with pip3 ...24

Fig 3.6: Wooden Container model used for training purposes .. 25

Fig 3.7: Leveled images using tzutalin/levelimg ... 26

Fig 3.8: Generated CSV file .. 27

Fig 3.9: Learning Curve .. 28

Fig 3.10: Portion of Object detection algorithm ... 29

Fig 3.11: Detection of single container in an Image ... 30

Fig 3.12: Detection of multiple container in an Image ... 31

Fig 3.13: Real time multiple object detection from live video feed ... 32

Fig 3.14: Detection API signal Algorithm ... 33

Fig 3.15: Arduino Signal Manipulationl Algorithm .. 34

Fig 3.16: Prototype of automated port cargo handler .. 35

Fig A.1: Source Code-1 .. 43

Fig A.2: Source Code-2 .. 44

Fig A.3: Source Code-3 .. 45

Fig A.4: Source Code-4 .. 46

Fig A.5: Source Code-5 .. 47

ix

NOTATIONS

tf = Tensorflow Classification Function

tf.get_default_graph= Tensor Default Graph Calling Function

tensor.slice= Tensor Flow Image Slicing Function

 detection_boxes= Classification confidence function

image.shape[]= Images Array After Shaping

ReLU= Object Weight Factor Function

x

ACRONYMS AND ABBREVIATIONS

 XML= Image Data Containing File
 CSV= Image Dimension File
 Numpy= Python Math Package
 Jupyter=Python Notebook Management Package
 Mathplotlib=Python Math Plotter Package
 Pip= Python Package Management Tool
 OpenCV=Python Video Capture Package

1

1

CHAPTER ONE

INTRODUCTION

 1.1 General

Artificial intelligence (AI), sometimes called machine intelligence,

is intelligence demonstrated by machines, in contrast to the natural intelligence displayed

by humans and other animals[1]. In computer science AI research is defined as the study of

"intelligent agents": any device that perceives its environment and takes actions that

maximize its chance of successfully achieving its goals[1]. Colloquially, the term "artificial

intelligence" is applied when a machine mimics "cognitive" functions that humans

associate with other human minds, such as "learning" and "problem solving"[1]. The scope

of AI is disputed: as machines become increasingly capable, tasks considered as requiring

"intelligence" are often removed from the definition, a phenomenon known as the AI

effect, leading to the quip, "AI is whatever hasn't been done yet." For instance, optical

character recognition is frequently excluded from "artificial intelligence", having become

a routine technology[2]. Modern machine capabilities generally classified as AI include

successfully understanding human speech, competing at the highest level in strategic

game systems (such as chess and Go), autonomously operating cars, and intelligent

routing in content delivery networks and military simulations[2].

Artificial intelligence was founded as an academic discipline in 1956, and in the years

since has experienced several waves of optimism, followed by disappointment and the

2

loss of funding (known as an "AI winter"), followed by new approaches, success and

renewed funding. For most of its history, AI research has been divided into subfields that

often fail to communicate with each other. These sub-fields are based on technical

considerations, such as particular goals (e.g. "robotics" or "machine learning"), the use of

particular tools ("logic" or artificial neural networks), or deep philosophical

differences. Subfields have also been based on social factors (particular institutions or the

work of particular researchers).

In the twenty-first century, AI techniques have experienced a resurgence following

concurrent advances in computer power, large amounts of data, and theoretical

understanding; and AI techniques have become an essential part of the technology

industry, helping to solve many challenging problems in computer science, software

engineering and operations research.

Artificial Intelligence or Machine learning tasks are typically classified into several broad
categories:

 Supervised learning: The computer is presented with example inputs and
their desired outputs, given by a "teacher", and the goal is to learn a general
rule that maps inputs to outputs. As special cases, the input signal can be
only partially available, or restricted to special feedback[3].

 Semi-supervised learning: The computer is given only an incomplete
training signal: a training set with some (often many) of the target outputs
missing[3].

 Active learning: The computer can only obtain training labels for a limited
set of instances (based on a budget), and also has to optimize its choice of
objects to acquire labels for. When used interactively, these can be
presented to the user for labeling[3].

 Unsupervised learning: No labels are given to the learning algorithm,
leaving it on its own to find structure in its input. Unsupervised learning
can be a goal in itself (discovering hidden patterns in data) or a means
towards an end (feature learning)[3].

3

 Reinforcement learning: Data (in form of rewards and punishments) are
given only as feedback to the program's actions in a dynamic environment,
such as driving a vehicle or playing a game against an opponent[3].

To achieve our objective, we worked with supervised machine learning. Supervised

learning is the machine learning task of learning a function that maps an input to an

output based on example input-output pairs[4]. It infers a function from labeled training

data consisting of a set of training examples. In supervised learning, each example is

a pair consisting of an input object (typically a vector) and a desired output value (also

called the supervisory signal)[7]. A supervised learning algorithm analyzes the training

data and produces an inferred function, which can be used for mapping new examples.

An optimal scenario will allow for the algorithm to correctly determine the class labels

for unseen instances. This requires the learning algorithm to generalize from the training

data to unseen situations in a "reasonable" way

One of the important segments of supervised learning is object detection. Object

detection in computer vision. Object detection is the process of finding instances of real-

world objects such as faces, bicycles, and buildings in images or videos. Object

detection algorithms typically use extracted features and learning algorithms to recognize

instances of an object category.

Containers in ships can be detected using object detection algorithm. For this, algorithm

has to be trained to detect containers on a ship. To automate this system fully, the design

of containers have to be changed slightly. When the containers are stacked upon one

another, the top part of the upper most containers should have two sign attached on it:

4

Number of containers on that stack and the products the containers are carrying. Based on

that data and using object detection algorithm, automated port crane will handle the

containers based on free space available.

 1.2 Objective of the study

There are several objectives which have been followed in this study. The main objectives

of the study are as follows:

 To automate port containers loading-unloading based on the free space

available on port using machine learning object detection API.

 To categorize port containers based on the products inside the containers using

machine learning

 Determine the further applicability of machine learning in shipping industry

such as determining cost efficient route and increasing security using face

recognition.

 1.3 Scope of the Thesis

In this research work feasibility of automated port cargo handling is checked by

comparing the process with manual containers handling and the evaluation of this process

based on a real time trained model. The objective of this thesis is not concerned with the

applicability of automation in port cargo handling. But this research can be used to

determine the further applicability of machine learning and object detection in port cargo

handling.

5

 1.4 Organization of the thesis

The thesis has been organized in five chapters. In chapter one, a general introduction to

the research needs along with its objectives and scope of the study are provided.

In chapter two of this dissertation, a brief review on available literature regarding

characteristics and types of available neural network techniques used in the artificial

intelligence field is presented. In addition, disadvantages of manual handling of containers

also discussed in this chapter.

In chapter three, the process of training and building of self-learned automated port

system along with machine learning technologies are discussed.

In chapter four, Log loss of different learning system are discussed and compared with

one another to find out the system with minimum log loss which will detect object with

maximum confidence.

In chapter five, conclusions emerged from the study are discussed. Recommendations for

future research are also presented.

6

CHAPTER TWO

 PRELEMINARIES AND LITERATURE REVIEW

 2.1 General

To fulfill the objective of our thesis we are going to TensorFlow object detection API

which is developed by Google. TensorFlow was developed by the Google Brain team for

internal Google use. It was released under the Apache 2.0 open source license on

November 9, 2015. TensorFlow will help us train our machine using Mobilenet V2 SSD

model which is 35% faster than Mobilenet V1 SSD. By using this model we are going to

train our machine based on around 500 images of containers prototypes that we have built

for training purpose. We will train this machine to build a model which will give us an

idea about automated port cargo handling which will be further used to evaluate it against

manual cargo handling. In the coming section, we will discuss about the introduction of

containers in shipping industry, disadvantages of manual handling of containers and brief

literature review on various aspects of object detection algorithm.

 2.2 Introduction of Containers

Before containerization, goods were usually handled manually as break bulk cargo.

Typically, goods would be loaded onto a vehicle from the factory and taken to a port

warehouse where they would be offloaded and stored awaiting the next vessel.

Containerization has its origins in early coal mining regions in England beginning in the

late 18th century. In 1766 James Brindley designed the box boat 'Starvationer' with 10

7

wooden containers, to transport coal from Worsley Delph (quarry) to Manchester

by Bridgewater Canal. In 1795, Benjamin Outram opened the Little Eaton Gangway, upon

which coal was carried in wagons built at his Butterley Ironwork. The horse-drawn

wheeled wagons on the gangway took the form of containers, which, loaded with coal,

could be transshipped from canal barges on the Derby Canal, which Outram had also

promoted. During World War II, the Australian Army used containers to help more easily

deal with various breaks of gauge in the railroads. These non-stackable containers were

about the size of the later 20-foot ISO container and perhaps made mainly of wood.

During the same time, the United States Army started to combine items of uniform size,

lashing them onto a pallet, unitizing cargo to speed the loading and unloading of transport

ships. In April 1951, at Zürich Tiefenbrunnen railway station, the Swiss Museum of

Transport and Bureau International des Containers (BIC) held demonstrations of

container systems, with the aim of selecting the best solution for Western Europe. Present

were representatives from France, Belgium, the Netherlands, Germany, Switzerland,

Sweden, Great Britain, Italy and the United States.

 2.3 Disadvantages of manual handling of containers

Manual handling of containers is time and resource consuming and often considered risky.

The main bottleneck of manual handling lies on its poor handling of containers which

results in a lot of time consumption as a ship has to wait on a port for very long time to be

fully discharged. Another problem is obviously huge loss of resources such as too much

wastage of money as this process involved too much human resources. According to

Chittagong port authority to handle one container port authority charges the ship owner 65

8

dollars which is too much costly for a single container. This cost increases more when the

charges of various agencies are also considered.

 2.4 Introduction to automation: Neural Networking

An Artificial Neural Network (ANN) is an information processing paradigm that is

inspired by the way biological nervous systems, such as the brain, process information.

The key element of this paradigm is the novel structure of the information processing

system. It is composed of a large number of highly interconnected processing elements

(neurones) working in unison to solve specific problems. ANNs, like people, learn by

example[3]. An ANN is configured for a specific application, such as pattern recognition

or data classification, through a learning process[3]. Learning in biological systems

involves adjustments to the synaptic connections that exist between the neurones. This is

true of ANNs as well[4].

 2.5 Architecture of Neural Networking

 There are two types of Neural Networking:
• Feed-Forward Networks

• Feedback Networks

9

 2.5.1 Feed-forward networks

Feed-forward ANNs allow signals to travel one way only; from input to output. There is

no feedback (loops) i.e. the output of any layer does not affect that same layer. Feed-

forward ANNs tend to be straight forward networks that associate inputs with outputs.

They are extensively used in pattern recognition. This type of organization is also

referred to as bottom-up or top-down[4].

 2.5.2 Feedback network:

Feedback networks can have signals travelling in both directions by introducing loops in

the network. Feedback networks are very powerful and can get extremely complicated.

Feedback networks are dynamic; their 'state' is changing continuously until they reach an

equilibrium point. They remain at the equilibrium point until the input changes and a new

equilibrium needs to be found. Feedback architectures are also referred to as interactive

or recurrent, although the latter term is often used to denote feedback connections in

single-layer organizations[4].

10

Fig 2.1: An example of a simple feedforward network

 2.5.3 Network layers:

The commonest type of artificial neural network consists of three groups, or layers, of

units: a layer of "input" units is connected to a layer of "hidden" units, which is connected

to a layer of "output" units.

 The activity of the input units represents the raw information that is fed

into the network[5].

 The activity of each hidden unit is determined by the activities of the input

units and the weights on the connections between the input and the hidden

units[5].

11

 The behavior of the output units depends on the activity of the hidden

units and the weights between the hidden and output units[5].

This simple type of network is interesting because the hidden units are free to construct

their own representations of the input. The weights between the input and hidden units

determine when each hidden unit is active, and so by modifying these weights, a hidden

unit can choose what it represents[8].

We also distinguish single-layer and multi-layer architectures. The single-layer

organisation, in which all units are connected to one another, constitutes the most general

case and is of more potential computational power than hierarchically structured multi-

layer organisations. In multi-layer networks, units are often numbered by layer, instead of

following a global numbering[8].

 2.6 The Learning Process

The memorization of patterns and the subsequent response of the network can be

categorized into two general paradigms:

 Associative mapping in which the network learns to produce a particular

pattern on the set of input units whenever another particular pattern is

applied on the set of input units. The associative mapping can generally be

broken down into two mechanisms

• Auto-association: an input pattern is associated with itself and the

states of input and output units coincide. This is used to provide

12

pattern competition, i.e. to produce a pattern whenever a portion

of it or a distorted pattern is presented. In the second case, the

network actually stores pairs of patterns building an association

between two sets of patterns[9].

• hetero-association: is related to two recall mechanisms:

 nearest-neighbor recall, where the output pattern

produced corresponds to the input pattern stored,

which is closest to the pattern presented, and

 Interpolative recall, where the output pattern is a

similarity dependent interpolation of the patterns

stored corresponding to the pattern presented. Yet

another paradigm, which is a variant associative

mapping is classification, i.e. when there is a fixed

set of categories into which the input patterns are to

be classified[9].

 Regularity detection in which units learn to respond to particular properties

of the input patterns. Whereas in associative mapping the network stores the

relationships among patterns, in regularity detection the response of each unit

has a particular 'meaning'. This type of learning mechanism is essential for

feature discovery and knowledge representation[10].

13

Every neural network possesses knowledge which is contained in the values of the

connections weights. Modifying the knowledge stored in the network as a function of

experience implies a learning rule for changing the values of the weights[10].

 Fig 2.2: Function of a Neural Network

 2.7 The Back-Propagation Algorithm

In order to train a neural network to perform some task, we must adjust the weights of

each unit in such a way that the error between the desired output and the actual output is

reduced. This process requires that the neural network compute the error derivative of the

weights (EW)[4]. In other words, it must calculate how the error changes as each weight

is increased or decreased slightly. The back propagation algorithm is the most widely

used method for determining the EW[4].

14

The back-propagation algorithm is easiest to understand if all the units in the network are

linear. The algorithm computes each EW by first computing the EA, the rate at which the

error changes as the activity level of a unit is changed. For output units, the EA is simply

the difference between the actual and the desired output[4]. To compute the EA for a

hidden unit in the layer just before the output layer, we first identify all the weights

between that hidden unit and the output units to which it is connected. We then multiply

those weights by the EAs of those output units and add the products. This sum equals

the EA for the chosen hidden unit. After calculating all the EAs in the hidden layer just

before the output layer, we can compute in like fashion the EAs for other layers, moving

from layer to layer in a direction opposite to the way activities propagate through the

network. This is what gives back propagation its name. Once the EA has been computed

for a unit, it is straight forward to compute the EW for each incoming connection of the

unit. The EW is the product of the EA and the activity through the incoming

connection[4].

 2.8 Convolutional Neural Network

Convolutional Neural Networks are very similar to ordinary Neural Networks; they are

made up of neurons that have learnable weights and biases. Each neuron receives some

inputs, performs a dot product and optionally follows it with a non-linearity[4]. The whole

network still expresses a single differentiable score function: from the raw image pixels

on one end to class scores at the other. And they still have a loss function (e.g.

15

SVM/Softmax) on the last (fully-connected) layer and all the methods for learning

regular Neural Networks still apply[4].

 2.9 Architecture Overview

A simple ConvNet is a sequence of layers,and every layer of a ConvNet transforms one

volume of activations to another through a differentiable function. We use three main

types of layers to build ConvNet architectures: Convolutional Layer, Pooling Layer, and

Fully-Connected Layer. We will stack these layers to form a full ConvNet architecture

Computers read images as pixels and it is expressed as matrix (N ×N ×3) (height by

width by depth)[5]. Images make use of three channels (rgb), so that is why we have a

depth of 3. The Convolutional Layer makes use of a set of learnable filters. A filter is

used to detect the presence of specific features or patterns present in the original image

(input). It is usually expressed as a matrix (M×M×3) ,with a smaller dimension but the

same depth as the input file. This filter is convolved (slided) across the width and height

of the input file, and a dot product is computed to give an activation map[5[8].

Different filters which detect different features are convolved on the input file and a set of

activation maps is outputted which is passed to the next layer in the CNN[6][7].

 Figure 2.3: The use of filters to get Activation Maps

16

 Activation function is a node that is put at the end of or in between Neural Networks.

They help to decide if the neuron would fire or not[8].

Figure 2.4: Activation functions

ReLU function is the most widely used activation function in neural networks today. One

of the greatest advantages ReLU has over other activation functions is that it does not

activate all neurons at the same time. From the image for ReLU function above, well

notice that it converts all negative inputs to zero and the neuron does not get

activated[6][7]. This makes it very computational efficient as few neurons are activated per

time. It does not saturate at the positive region. In practice, ReLU converges six times

faster than tanh and sigmoid activation functions[9].

The Pooling layer can be seen between Convolution layers in CNN architecture. This

layer basically reduces the amount of parameters and computation in the network,

controlling over fitting by progressively reducing the spatial size of the network. There

are two operations in this layer; Average pooling and maximum pooling[7]. Max-pooling,

17

like the name states; will take out only the maximum from a pool. This is actually done

with the use of filters sliding through the input; and at every stride, the maximum

parameter is taken out and the rest is dropped[7]. This actually down-samples the network.

Unlike the convolution layer, the pooling layer does not alter the depth of the network,

the depth dimension remains unchanged[10].

 Fig 2.6: All layers of convolutional neural network demonstration

18

CHAPTER THREE

CLASSIFICATION AND DATA TRAINING PROCESS

 3.1 Introduction

As discussed earlier, TensorFlow object detection API is used to train the model. For

programming purpose we have used Python 3.7. We have also used several python

packages to fulfill our objective. Besides of using TensorFlow Api, TensorFlow python

package also used to integrate it with python. Numpy package is used to make image

array. Matplotlib is used to plot data and opencv to capture video feed. In this chapter we

will discuss about these features and the process of training the machine.

 3.2 TensorFlow object detection API

Creating accurate machine learning models capable of localizing and identifying

multiple objects in a single image remains a core challenge in computer vision. The

TensorFlow Object Detection API is an open source framework built on top of

TensorFlow that makes it easy to construct, train and deploy object detection models. It is

used for both research and production at Google. TensorFlow was developed by

the Google Brain team for internal Google use. It was released under the Apache 2.0

open source license on November 9, 2015.

19

 3.2.1 Working procedure of TensorFlow

Basics of TensorFlow are that first we create a model which is called a computational

graph with TensorFlow objects then we create a TensorFlow session in which we start

running all the computation[8]. Libraries like TensorFlow are not simply deep learning

libraries; they are libraries for deep learning. They are actually just number-crunching

libraries, much like Numpy is. The difference is, however, a package like TensorFlow

allows us to perform specific machine learning number-crunching operations like

derivatives on huge matrices with large efficiency[8]. We can also easily distribute this

processing across our CPU cores, GPU cores, or even multiple devices like multiple

GPUs. But that's not all! We can even distribute computations across a distributed

network of computers with TensorFlow. So, while TensorFlow is mainly being used with

machine learning right now, it actually stands to have uses in other fields, since really it is

just a massive array manipulation library[5].

What is a tensor? Up to this point in the machine learning series, we've been working

mainly with vectors (numpy arrays), and a tensor can be a vector. Most simply, a tensor

is an array-like object, and, as you've seen, an array can hold your matrix, your vector,

and really even a scalar[6].

At this point, we just simply need to translate our machine learning problems into

functions on tensors, which is possible with just about every single ML algorithm[8].

Consider the neural network. What does a neural network break down into?

20

We have data (X), weights (w), and thresholds (t). Are all of these tensors? X will be the

dataset (an array), so that's a tensor. The weights are also an array of weight values, so

they're tensors too. Thresholds? Same as weights. Thus, our neural network is indeed a

function of X,w, and t, or f(Xwt), so we are all set and can certainly use TensorFlow, but

how?

TensorFlow works by first defining and describing our model in abstract, and then, when

we are ready, we make it a reality in the session. The description of the model is what is

known as your "Computation Graph" in TensorFlow terms. Let's play with a simple

example. First, let's construct the graph:

 Fig 3.1: TensorFlow graph construction algorithm

So we have some values. Now, we can do things with those values, such as

multiplication.

21

Notice that the output is just an abstract tensor still. No actual calculations have been

run, only operations created. Each operation, or "op," in our computation graph is a

"node" in the graph[9].

To actually see the result, we need to run the session. Generally, you build the graph

first, then you "launch" the graph:

 Fig 3.2: TensorFlow Launching Graph

 3.2.2 Installation procedure of TensorFlow

TensorFlow is installed with Python's pip package manager. Official packages available
for Ubuntu, Windows, macOS, and the Raspberry Pi.

 Fig 3.3: TensorFlow Installation

22

 3.3 Python and pip3

Python is an interpreted high-level programming language for general-purpose

programming. Created by Guido van Rossum and first released in 1991, Python has a

design philosophy that emphasizes code readability, notably using significant whitespace.

Python 3.7 has been downloaded from its official site and installed on local machine.

pip is a package management system used to install and manage software packages

written in Python. Many packages can be found in the default source for packages and

their dependencies — Python Package Index (PyPI). pip is a recursive acronym for

"Pip Installs Packages".

 3.4 Installation of Python Packages

We have used several python packages to build a successful interface between Python 3.7

and TensorFlow object detection API. All these packages have own working and

installation procedure.

 3.4.1 Jupyter Notebook

Jupyter Notebook is used to organize our project. It works Like an IDE. The Jupyter

Notebook is an open-source web application that allows one to create and share

documents that contain live code, equations, visualizations and narrative text. Uses

include: data cleaning and transformation, numerical simulation, statistical modeling,

23

data visualization, machine learning, and much more. Python is a prerequisite for python.

We have installed Jupyter with python pip3 command line.

Fig 3.4: Jupyter Installation with pip3

 3.4.2 Numpy

Numpy is used to make image array. Images that we have taken for our training and

testing purposes are categorized into array using Numpy. NumPy is the fundamental

package for scientific computing with Python. It contains among other things:

• a powerful N-dimensional array object
• sophisticated (broadcasting) functions
• tools for integrating C/C++ and Fortran code
• useful linear algebra, Fourier transform, and random number capabilities

 Besides its obvious scientific uses, NumPy can also be used as an efficient multi-

dimensional container of generic data. Arbitrary data-types can be defined. This allows

NumPy to seamlessly and speedily integrate with a wide variety of databases.

 3.4.3 Matplotlib

Matplotlib is a Python 2D plotting library which produces publication quality figures in a

variety of hardcopy formats and interactive environments across platforms. Matplotlib

24

can be used in Python scripts, the Python and IPython shells, the Jupyter notebook, web

application servers, and four graphical user interface toolkits.

 Fig 3.5: Matplotlib installation with pip3

 3.4.4 OpenCV

OpenCV is a library of programming functions mainly aimed at real-time computer

vision. Originally developed by Intel, it was later supported by Willow Garage then

Itseez. The library is cross-platform and free for use under the open-source BSD license.

OpenCV was designed for computational efficiency and with a strong focus on real-time

applications. Written in optimized C/C++, the library can take advantage of multi-core

processing. Enabled with OpenCL, it can take advantage of the hardware acceleration of

the underlying heterogeneous compute platform.

 3.5 Training Process

For Training Process we have taken around 500 photos of our model from different

angle. After that we labeled the container in the image to make it detectable for

TensorFlow. For this purpose we used tzutalin/levelimg. Using tzutalin/levelimg we have

made border around our container boxes in our images and give the labeled images a

class. We use this procedure to make the container detectable to TensorFlow object

25

detection API. After leveling our image, Levelimg package make a .xml file containing

matching annotation information for each image. We have used protoc-3.6.0-win32 to

serialize our data. All of TensorFlow's file formats are based on Protocol Buffers.

Protocol buffers are Google's language-neutral, platform-neutral, extensible mechanism

for serializing structured data – think XML, but smaller, faster, and simpler. One can

define how he wants his data to be structured once, and then he can use special generated

source code to easily write and read his structured data to and from a variety of data

streams and using a variety of languages.

 Fig 3.6: Wooden container model used for training purposes

We have split our image files along with their respective .xml files in two folders: train

and test.10% of images with their respective xml files are put into test folder and the rest

26

90% are put into train folder. Training process requires a large amount of data as the

neural network learns from different view point.

Fig 3.7: Leveled images using tzutalin/levelimg

We have converted our .xml files to two.csv file train_levels.csv and test_levels.csv using

xml_to_csv.py file. A CSV is a comma separated values file which allows data to be

saved in a table structured format. CSVs look like a garden-variety spreadsheet but with a

.csv extension. Traditionally they take the form of a text file containing information

separated by commas, hence the name. After converting .xml to .csv, we have converted

.csv files into .tfr file using generate_tfrecord.py. Produced train.record was used to

train the machine.

27

If someone is working with large datasets, using a binary file format for storage of data

can have a significant impact on the performance of import pipeline and as a consequence

on the training time of model. Binary data takes up less space on disk, takes less time to

copy and can be read much more efficiently from disk. This is especially true if data is

stored on spinning disks, due to the much lower read/write performance in comparison

with SSDs. However, pure performance isn’t the only advantage of the TFRecord file

format. It is optimized for use with TensorFlow in multiple ways. To start with, it makes it

easy to combine multiple datasets and integrates seamlessly with the data import and

preprocessing functionality provided by the library. Especially for datasets that are too

large to be stored fully in memory this is an advantage as only the data that is required at

the time (e.g. a batch) is loaded from disk and then processed. Another major advantage of

TFRecords is that it is possible to store sequence data — for instance, a time series or word

encodings — in a way that allows for very efficient and (from a coding perspective)

convenient import of this type of data.

Fig 3.8: Generated CSV file

We have used ssd_mobilenet_v1_coco_11_06_2017 as a training model because it is

faster than other model. so, it takes less time to train model. After, configuring all our

28

files, we started to train our machine to detect our container model. As we don’t have a

dedicated GPU and our machine only run on a CPU. Our machine is not trained properly.

After training process our total loss was below 2. That means our machine can detect

within the range of 98% accuracy. For a decent training, it would take 10,000 iteration

but we took only around 200 iteration.

 Fig 3.9: Learning Curve

 3.6 Testing process

To test our machine we have used two types of data: Static test images and live video

feed from camera. The purpose of using two types of data is to observe if our machine

could detect container in real world situation.

29

 Fig 3.10: Portion of Object detection algorithm

 3.6.1 Testing process using static images

We have separated 10% of our captured images to test our trained machine. As our loss

is less than 2% after 2400 epoch so our machine has an ability to detect containers in

30

static images with at least 98% accuracy. Our trained machine did not learn to identify or

classify any other objects than containers. But the static images have an advantages than

live video feed. In static images possibility of presence of other objects is too small and it

takes less CPU and GPU memory to classify the desired object which in our case is

container.

Fig 3.11: Detection of single container in an Image

31

Fig 3.12: Detection of multiple container in an Image

 3.6.2 Testing process using live video feed

One of the biggest challenges of our research was detecting container from live video

feed. We have used OpenCV for this purpose. OpenCV captured video feed from our

default web cam and then pass it to our trained machine to detect container from it. As we

only run on CPU, detection process was quite slow. Another challenge of our research

was calculating the position of detected containers. For this purpose we have subdivided

our screen into two grids and developed an algorithm that will send a specific message

when a container is detected on a grid. There is a bottleneck of detecting containers from

live video feed. As our machine is not yet trained to detect all objects it can encounter in

32

a port area, so it will classify or detect any other unfamiliar objects as container with

higher rate of accuracy. We have solved this problem in two steps. We have increased the

 Fig 3.13: Real time multiple object detection from live video feed

threshold of accuracy from 70% to 90%. The second step is to take snaps from live video

feed so that the machine will run the object detection algorithm only for a short time.

This will result in a less memory consumption of CPU and GPU and the machine will

have to handle less objects.

33

 3.7 Prototype of automated port handling mechanism

We have tried to build a prototype to demonstrate how automated port handling

mechanism. We have used two stepper motors to mimic the process. Arduino UNO is

used to make an interface between hardware and object detection API. For this we have

used Python Pyserial package to enable the objection detection API to communicate with

arduino. We have sent signals when a container is detected on a grid. The signals vary

depend on which grid has the container. Based on the position of container on a specific

grid, Pyserial package sends a specific signal based on the location where the container is

detected to the serial port which enables the arduino to rotate the servo motor to a specific

rotation number which in turns send the crane to the specific location of the containers

and the crane handles the containers based on free space available.

34

Fig 3.14: Detection API signal Algorithm

35

Fig 3.15: Arduino signal manipulation algorithm

36

Fig 3.16: Prototype of automated port cargo handler

37

CHAPTER FOUR

EXPERIMENTAL RESULTS

 4.1 Introduction

We have discussed the procedure to obtain our objective last chapter. As we have not any

dedicated GPU and high end CPU, we have failed to train our model with 100%

efficiency. To train the machine we have used

• An Intel Core i5 7th Gen CPU

• NVIDIA GEFORCE 2GB GPU

 4.2 Total loss

We have got Loss/BoxClassifierLoss/classification_loss/mul_1 as below 2. Loss for the

classification of detected objects into various classes: Cat, Dog, Airplane etc. In our case

it will be loss for the classification of detected containers into one single class which is

container. As our loss is slightly higher than 1, so our machine will detect the object with

a confidence percentage of minimum 98%. The loss has been measured using

TensorBoard graph API.

38

 4.3 Total loss comparison for different models

Table 4.1: Experimental Results

 4.4 Conclusion

The lowest Log Loss in our experiment is .55. Although this is a good Log Loss, but it is

not the best. The lowest Log Loss that has been reported for this particular dataset is .39.

So there are a lot of rooms for optimization. We have plan for continuing to work on this

problem. In the next chapter we’ll discuss our future plan which might decrease the Log

Loss even further.

39

CHAPTER FIVE

CONCLUSIONS

 5.1 Introduction

As we’ve seen in our experimental result that our result isn’t the best result out there. But

there are a lot of improvements. Below is some improvements that can be done but we

couldn’t do it due to limited time and resources.

• The accuracy of the built machine is more than 98% for detecting

containers. However, it is possible to increase the accuracy of the

prototype machine up to 100% using high quality equipment and machine

parts.

• Using this system cargo handling of port can automated and time and

cost of handling can be reduced.

• One big improvement in the result should be seen if we could use

ResNet101 or maybe ResNet152. But that will take so much time and

resources to train on such huge data which we can’t afford at this

moment.

• Working on 3D blobs rather than 2D blobs.

• Gathering more data for training.

• We have failed to classify the containers based on the project inside and

one of the drawback of our research is our trained model can work for

only one container i.e., it can handle only one container at a time but it

40

cannot handle a stack of containers continuously. So, there is a scope of

improving this research based on these shortcomings.

• As this system is automated, a closed loop control system can be

introduced with controller function (Gc), process function(G), Sensor

function (H). All the disturbance should be taken into account.

 Hopefully in near future we’ll get enough resource to train and improve the ideas that

we couldn’t test this time.

41

42

REFERENCES

1. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural network models for
practical applications,” arXiv preprint arXiv: 1605.07678, 2016

2. S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition: A convolutional
neural-network approach,” IEEE transactions on neural networks, vol. 8, no. 1, pp. 98–
113, 1997.

3. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” CoRR, vol. abs/1505.04597, 2015.

4. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
CoRR, vol. abs/1512.03385, 2015.

5. Statistical Decision Making for Optimal Budget Allocation in Crowd Labeling
Xi Chen, Qihang Lin, Dengyong Zhou; 16(Jan):1−46, 2015.

6. M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector
machines,” IEEE Intelligent Systems and their applications, vol. 13, no. 4, pp. 18–28,
1998.

7. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining,
pp. 785–794, ACM, 2016.

8. D.A.vanDykandX.-L.Meng,“Theartofdataaugmentation,”JournalofComputational and
Graphical Statistics, vol. 10, no. 1, pp. 1–50, 2001.

9. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,”
International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

10. D. M. Hawkins, “The problem of overfitting,” Journal of chemical information and
computer sciences, vol. 44, no. 1, pp. 1–12, 2004.

11. R. E. Schapire, “The boosting approach to machine learning: An overview,” in Nonlinear
estimation and classification, pp. 149–171, Springer, 2003.

12. T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class adaboost,” Statistics and its
Interface, vol. 2, no. 3, pp. 349–360, 2009.

43

APPENDIX

Source Code:

Fig A.1: Source Code-1

44

Fig A.2: Source Code-2

45

Fig A.3: Source Code-3

46

Fig A.4: Source Code-4

47

Fig A.5: Source Code-5

48

How to Operate the Autonomous Equipment:

1. A PC with a minimum 2 GB GPU will be required to run the machine.

2. The PC must have TensorFlow API and Python 3 installed on it along with necessary

Python packages described on this document.

3. A web camera or any sort of visioning device will be required to enable the visioning

capability of the equipment.

4. An Arduino UNO and necessary programming IDE will be required.

5. To enable the machine to classify customized object necessary command should be run in

specific directory from command prompt. Such as: python3

obeject_detection_container.py

	ACRONYMS AND ABBREVIATIONS
	ACRONYMS AND ABBREVIATIONS

	NOTATIONS
	NOTATIONS

	Thesis-book-test
	DECLARATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	List of Tables
	List of Figures
	CHAPTER ONE
	INTRODUCTION
	1.1 General
	1.2 Objective of the study
	1.3 Scope of the Thesis
	1.4 Organization of the thesis

	CHAPTER TWO
	PRELEMINARIES AND LITERATURE REVIEW
	2.1 General
	2.2 Introduction of Containers
	2.3 Disadvantages of manual handling of containers
	2.4 Introduction to automation: Neural Networking
	2.5 Architecture of Neural Networking
	There are two types of Neural Networking:
	2.5.1 Feed-forward networks
	2.5.2 Feedback network:
	2.5.3 Network layers:

	2.6 The Learning Process
	2.7 The Back-Propagation Algorithm
	2.8 Convolutional Neural Network
	2.9 Architecture Overview

	CHAPTER THREE
	CLASSIFICATION AND DATA TRAINING PROCESS
	3.1 Introduction
	3.2 TensorFlow object detection API
	3.2.1 Working procedure of TensorFlow
	3.2.2 Installation procedure of TensorFlow

	3.3 Python and pip3
	3.4 Installation of Python Packages
	3.4.1 Jupyter Notebook
	3.4.2 Numpy
	3.4.3 Matplotlib
	3.4.4 OpenCV

	3.5 Training Process
	3.6 Testing process
	3.6.1 Testing process using static images
	3.6.2 Testing process using live video feed

	3.7 Prototype of automated port handling mechanism

	CHAPTER FOUR
	EXPERIMENTAL RESULTS
	4.1 Introduction
	4.2 Total loss
	4.3 Total loss comparison for different models
	4.4 Conclusion

	CHAPTER FIVE
	CONCLUSIONS
	5.1 Introduction

	REFERENCES
	APPENDIX

